Hawking, Stephen (1942- )
Hawking, Stephen (1942- )
English physicist
Stephen Hawking has been called the most insightful theoretical physicist since Albert Einstein . His work concentrates on the puzzling cosmic bodies called black holes and extends to such specialized fields as particle physics , supersymmetry, and quantum gravity . The origin and fate of the universe are a central concern of Hawking's work. Though few people are able to understand the intricacies of these abstruse subjects, Hawking has gained a worldwide following, not only among other scientists, but also among a great many laypeople. As an author and lecturer, he has achieved celebrity status.
Stephen William Hawking was born in Oxford, England. He often refers to the fact that his birth date coincided with the 300th anniversary of Galileo Galilei's death. Hawking was the eldest child of an intellectual and accomplished family. His father, Frank Hawking, was a physician and research biologist who specialized in tropical diseases; his mother, Isobel, the daughter of a Glasgow physician and a well-read, lively woman, was active for many years in Britain's Liberal Party
Stephen Hawking's earliest years were spent in Highgate, a London suburb. In 1950, when he was eight, the family moved to St. Albans, a cathedral town some twenty miles northwest of London. Two years later, his family enrolled him in St. Albans School, a private institution affiliated with the cathedral. As Michael White and John Gribbin describe the young schoolboy in Stephen Hawking: A Life in Science, "He was eccentric and awkward, skinny and puny. His school uniform always looked a mess and, according to friends, he jabbered rather than talked clearly, having inherited a slight lisp from his father." Young Hawking's abilities made little impact on his teachers or fellow students. But he already knew he wanted to be a scientist, and by the time he reached his middle teens, he had decided to pursue physics or mathematics.
Gangly and unathletic, Hawking formed close friendships with a small group of other precocious boys at school. Intrigued by subjects that focused on measurable quantities and objective reasoning, Hawking began to show increasing skill at mathematics, and soon he was outdistancing his peers with high grades while spending very little time on homework. In 1958, Hawking and his friends built a primitive computer that actually worked. In the spring of 1959, Hawking won an open scholarship in natural sciences to University College, Oxford—his father's old college—and in October he enrolled there. It was at Oxford that his unusual abilities began to become more obvious. Hawking's ease at handling difficult problems made it seem to others that he didn't need to study. In Stephen Hawking's Universe, John Boslough wrote, "He took an independent and freewheeling approach to studies although his tutor, Dr. Robert Berman, recalls that he and other dons were aware that Hawking had a first-rate mind, completely different from his contemporaries."
In 1962, after receiving a first-class honors degree from Oxford, Hawking set off for Cambridge University to begin studying for a Ph.D. in cosmology . Now he was beginning to deal with some of the themes that would preoccupy him throughout his life. One of these was the poorly understood question of black holes. As scientists were later to realize, a black hole is a cosmic body that by its very nature can never be seen. One type of black hole is thought to be the remnant of a collapsed star, which possesses such intense gravity that nothing can escape from it, not even light. Hawking was also intrigued by "space-time singularities," those phenomena in the physical universe or moments in its history where physics seems to break down. In attempting to understand a black hole and the space-time singularity at its center, Hawking made pioneering studies, using formulas developed more than half a century earlier by Einstein.
Hawking received his Ph.D. in 1965 and obtained a fellowship in theoretical physics at Gonville and Caius College, Cambridge. He continued his work on black holes, frequently collaborating with Roger Penrose, a mathematician a decade his senior, who like Hawking was deeply interested in theories of space-time. Though still in his twenties, Hawking was beginning to acquire a reputation, and he would often attend conferences where he shocked people by questioning the findings of eminent scientists much older than himself.
In 1968, Hawking joined the staff of the Institute of Astronomy in Cambridge. He and Penrose began using complex mathematics to apply the laws of thermodynamics to black holes. He continued to travel to America, the Soviet Union, and other countries, and in 1973, he published a highly technical book, The Large Scale Structure of Space-Time, written with G. F. R. Ellis. Not long afterward, Hawking made a startling discovery: whereas virtually all previous thinking assumed that black holes could not emit anything, Hawking theorized that under certain conditions they could emit subatomic particles. These particles became known as Hawking Radiation.
Early in 1974, at the unusually young age of 32, Hawking was named a fellow of the Royal Society. Soon afterward, he spent a year as Fairchild Distinguished Scholar at the California Institute of Technology in Pasadena. On returning to England, he continued to work toward a theory of the origin of the universe. In this endeavor, he made progress toward linking the theory of relativity, which deals with gravity, with quantum mechanics, which deals with minuscule events inside the atom . Such a theoretical linkage, long sought by researchers, is called the Grand Unification Theory. In 1978, Hawking received the Albert Einstein Award of the
Lewis and Rose Strauss Memorial Fund, the most prestigious award in theoretical physics. The following year he co-edited a book with Werner Israel, called General Relativity: An Einstein Centenary Survey. In 1979, Hawking was named Lucasian Professor of Mathematics at Cambridge—a position held three centuries earlier by Sir Isaac Newton . In the 1980s, his work was beginning to lead him to question the big bang theory , which most other scientists were accepting as the probable origin of the universe. Hawking now asked whether there really had ever been a beginning to space-time (a big bang), or whether one state of affairs (one universe, to put it loosely) simply gave birth to another without beginning or end. Hawking suggested that new universes might be born frequently through little-understood anomalies in space-time. He also investigated string theory and exploding black holes, and showed mathematically that numerous miniature black holes may have formed early in the history of our universe.
In 1988, Hawking's A Brief History of Time: From the Big Bang to Black Holes was published. Intended for a general audience, it leapt onto best-seller lists in both America and Britain and remained there for several years. In that book, Hawking explained in simple language the evolution of his own thinking about the cosmos. Major articles followed in Time, Popular Science, and other magazines; films and television programs featured Hawking. He received honorary degrees from many institutions, including the University of Chicago, Princeton University, and the University of Notre Dame. His numerous awards included the Eddington Medal of the Royal Astronomical Society, in 1975; the Pius XI Gold Medal, in 1975; the Maxwell Medal of the Institute of Physics, in 1976; the Franklin Medal of the Franklin Institute, in 1981; the Gold Medal of the Royal Society, in 1985; the Paul Dirac Medal and Prize, in 1987; and the Britannica Award, in 1989.
In 1965, Hawking married Jane Wilde, and they had two sons and a daughter. The couple separated in 1990. Hawking suffers from amyotrophic lateral sclerosis, also called Lou Gehrig's disease, which confines him to a wheelchair and requires him to use a computer and voice synthesizer to speak.
Hawking, Stephen
Stephen Hawking
Born: January 8, 1942
Oxford, England
English scientist, physicist, and mathematician
British physicist and mathematician Stephen Hawking has made fundamental contributions to the science of cosmology—the study of the origins, structure, and space-time relationships of the universe.
Early life
Stephen William Hawking was born on January 8, 1942, in Oxford, England. His father, a well-known researcher in tropical medicine, urged his son to seek a career in medicine, but Stephen found biology and medicine were not exact enough. Therefore, he turned to the study of mathematics and physics.
Hawking was not an outstanding student at St. Alban's School, nor later at Oxford University, which he entered in 1959. He was a social young man who did little schoolwork because he was able to grasp the essentials of a mathematics or physics problem quickly. At home he reports, "I would take things apart to see how they worked, but they didn't often go back together." His early school years were marked by unhappiness at school, with his peers and on the playing field. While at Oxford he became increasingly interested in physics (study of matter and energy), eventually graduating with a first class honors in physics (1962). He immediately began postgraduate studies at Cambridge University.
Graduate school
The onset of Hawking's graduate education at Cambridge marked a turning point in his life. It was then that he embarked upon the formal study of cosmology, which focused his study. And it was then that he was first stricken with Lou Gehrig's disease, a weakening disease of the nervous and muscular system that eventually led to his total confinement in a wheelchair. At Cambridge his talents were recognized, and he was encouraged to carry on his studies despite his growing physical disabilities. His marriage in 1965 was an important step in his emotional life. Marriage gave him, he recalled, the determination to live and make professional progress in the world of science. Hawking received his doctorate degree in 1966. He then began his lifelong research and teaching association with Cambridge University.
Theory of singularity
Hawking made his first major contribution to science with his idea of singularity, a work that grew out of his collaboration (working relationship) with Roger Penrose. A singularity is a place in either space or time at which some quantity becomes infinite (without an end). Such a place is found in a black hole, the final stage of a collapsed star, where the gravitational field has infinite strength. Penrose proved that a singularity could exist in the space-time of a real universe.
Drawing upon the work of both Penrose and Albert Einstein (1879–1955), Hawking demonstrated that our universe had its origins in a singularity. In the beginning all of the matter in the universe was concentrated in a single point, making a very small but tremendously dense body. Ten to twenty billion years ago that body exploded in a big bang that initiated time and the universe. Hawking was able to produce current astrophysical (having to do with the study of stars and the events that occur around them) research to support the big bang theory of the origin of the universe and oppose the competing steady-state theory.
Hawking's research led him to study the characteristics of the best-known singularity: the black hole. A black hole's edges, called the event horizon, can be detected. Hawking proved that the surface area (measurement of the surface) of the event horizon could only increase, not decrease, and that when two black holes merged the surface area of the new hole was larger than the sum of the two original.
Hawking's continuing examination of the nature of black holes led to two important discoveries. The first, that black holes can give off heat, opposed the claim that nothing could escape from a black hole. The second concerned the size of black holes. As originally conceived, black holes were immense in size because they were the end result of the collapse of gigantic stars. Hawking suggested the existence of millions of mini-black holes formed by the force of the original big bang explosion.
Unified field theory
In the 1980s Hawking answered one of Einstein's unanswered theories, the famous unified field theory. A complete unified theory includes the four main interactions known to modern physics. The unified theory explains the conditions that were present at the beginning of the universe as well as the features of the physical laws of nature. When humans develop the unified field theory, said Hawking, they will "know the mind of God."
Publications
As Hawking's physical condition grew worse his intellectual achievements increased. He wrote down his ideas in A Brief History of Time: From the Big Bang to Black Holes. It sold over a million copies and was listed as the best-selling nonfiction book for over a year.
In 1993 Hawking wrote Black Holes and Baby Universes and Other Essays, which, in addition to his scientific thoughts, contains chapters about Hawking's personal life. He coauthored a book in 1996 with Sir Roger Penrose titled The Nature of Space and Time. Issues discussed in this book include whether the universe has boundaries and if it will continue to expand forever. Hawking says yes to the first question and no to the second, while Penrose argues the opposite. Hawking joined Penrose again the following year in the creation of another book, The Large, the Small, and the Human Mind (1997). In 2002 he was likewise celebrating the publication of The Universe in a Nutshell. Despite decreasing health, Hawking traveled on the traditional book release circuit. People with disabilities look to him as a hero.
Honors and commitments
Hawking's work in modern cosmology and in theoretical astronomy and physics is widely recognized. He became a fellow of the Royal Society of London in 1974 and five years later was named to a professorial chair at Cambridge University that was once held by Sir Isaac Newton (1642–1727). Beyond these honors he has earned a host of honorary degrees, awards, prizes, and lectureships from the major universities and scientific societies of Europe and America. By the end of the twentieth century Stephen Hawking had become one of the best-known scientists in the world. His popularity includes endorsing a wireless Internet connection and speaking to wheelchair-bound youth. He also had a special appearance on the television series Star Trek.
Though very private, it is generally known that Stephen's first marriage ended in 1991. He has three children from that marriage.
When asked about his objectives, Hawking told Zygon in a 1995 interview, "My goal is a complete understanding of the universe, why it is as it is and why it exists at all."
For More Information
Ferguson, Kitty. Stephen Hawking: A Quest for a Theory of the Universe. New York: F. Watts, 1991.
Henderson, Harry. Stephen Hawking. San Diego, CA: Lucent Books, 1995.
McDaniel, Melissa. Stephen Hawking: Revolutionary Physicist. New York: Chelsea House, 1994.
White, Michael, and John Gribbin. Stephen Hawking: A Life in Science. New York: Viking, 1992.