Lovelace, Ada Byron King, Countess of
Lovelace, Ada Byron King, Countess of
English Mathematician and Scientist
1815–1852
Augusta Ada Byron King, Countess of Lovelace, is considered to be the first computer programmer even though she was born before computers existed, and the program she wrote was for a machine that was never built. Lovelace was born on December 10, 1815, in London, England, to Annabella Milbanke and one of England's most famous poets, George Gordon, better known as Lord Byron.
The Byrons' marriage did not last long. A month after Lovelace was born, Lady Byron took the child and left the house, never to return. Lord Byron left England shortly after the separation and had no direct contact with his daughter ever again. Although Lady Byron assumed sole control of Lovelace's upbringing, Lord Byron worried about his child from the time of his separation until his death in 1824 and asked about her constantly. Many of Lovelace's childhood letters bear the signature AAda, but her first name, Augusta, for Lord Byron's half-sister Augusta Leigh, was not used after 1816 when rumors arose of scandalous behavior between the half-siblings.
Nineteenth-century society did not encourage women to use their minds, but Lady Byron was interested in developing her child's intellect and hired the best tutors for Lovelace. With the help of William Frend, her old mathematics tutor, she was able to provide science and mathematical studies to help control Lovelace's overactive imagination. By age six, according to the journal of one governess, Lovelace's morning schedule was divided into fifteen-minute lessons of arithmetic, grammar, spelling, reading, and music, while in the afternoon she studied geography, drawing, French, music, and reading.
At the age of thirteen, she corresponded with Frend, who influenced her studies in astronomy and algebra. But before long, Lovelace was studying mathematics that went beyond Frend's understanding. By the time she was thirty, Lovelace had written accurate descriptions of a new machine—the first digital computer—designed by British mathematician Charles Babbage (1791–1871). Even Babbage was astonished at the depth of her perception.
Lovelace had met Babbage at the age of seventeen when she attended a party at his house and he demonstrated the Difference Engine . It captured her imagination and she spent time studying its gears, rods, and wheels until she understood how the machine worked. However, their friendship did not blossom until much later.
In 1835 Lovelace married William King, who became the first Earl of Lovelace in 1838. During this time, Charles Babbage invented the Analytical Engine . By the time Lovelace wrote "Notes" on the Analytical Engine, she had been married eight years and had three children. Some of Lovelace's letters to her mother make clear her love for her children, while others show her being frustrated about the lack of time available to pursue her intellectual interests. Her desire to return to the study of mathematics was so intense that both her mother and husband sought ways to give her time to pursue her studies.
In 1840 Lovelace began to study mathematics with Augustus De Morgan, a famous British logician and mathematician. He was an exceptional teacher who was impressed with Lovelace's ability to learn and considered her a promising young beginner. He believed, however, that her intense study of mathematics would aggravate her health and lead to a nervous breakdown.
During the same year, Babbage attended a meeting of scientists in Turin, Italy, to explain the features of the Analytical Engine. He hoped that an eminent scientist would write an official report about his invention. He felt that this would impress the British government, which might then provide more funding for his project. Instead, a young Italian captain named Luigi Federico Menabrea, who later became prime minister of Italy, became the author.
In his paper, written in French, Menabrea described how the machine worked. This was a difficult task because the actual machine did not exist, and he had to work from Babbage's drawings, which used Babbage's own system of engineering notation. The article appeared in 1842 in the Bibliotheque Universelle de Geneve. A few months later, Charles Wheatstone, developer of the electric telegraph and a family friend, contacted Lovelace about translating it for the British journal Taylor's Scientific Memoirs.
When Babbage found out about this request, he tried to persuade Lovelace to write an entirely new article. She rejected the offer but proposed to add notes to bring Menabrea's text up to date. Lovelace was under a great deal of physical and mental stress during the time that she wrote the "Notes." She had moments of great anxiety, and although her doctors prescribed potentially dangerous remedies, her concentration did not weaken. The dual purpose of the notes, numbered A through G, was to clarify and elaborate on specific points about the machine and to gain support for it from the British government. They were not part of the original document, but were added to the end.
The first set of notes, A through D, explains the differences between the Difference and Analytical Engines, and the use of punched cards that controlled the actions of the machine and allowed it to divide a complex problem into a series of smaller steps. They also compare the Analytical Engine to Jacquard's Loom and emphasize that the Analytical Engine uses fewer cards because the cards can return to their original position in a process called backing, which today's programmers know as a loop.
Note E gives a complicated example of how the machine can work through a problem. Lovelace described properties that are present in modern computers, such as loops within loops and if-then statements. Note F suggests that the Analytical Engine would be capable of solving problems that had not been solved before, such as astronomical tables. Note G summarizes the functions of the machine and stresses that it can follow instructions but is not capable of generating any original work. In this note Lovelace detailed how the machine could be programmed to compute the calculation of Bernoulli numbers . She used the information and formulas supplied by Babbage and determined where the calculations would go into the machine and where the answers would be displayed. Since Lovelace had no machine on which to test the program, printed editions of her "Notes" available today contain some errors. The "Notes" were published in 1843. Following the Victorian norm, they did not carry her full name, but only her initials, A.A.L.
Lovelace liked the outdoors and loved horses and riding, a passion that her husband shared. During her work on the "Notes," she often went riding to clear her head. Later in life, her love of horses caused her to fall heavily in debt. The full extent of her racetrack gambling is unknown because the record of such transactions is no longer available. But by the spring of 1851, she had accumulated a debt of more than 3,200 pounds, which was a substantial sum in those days. At the same time her health deteriorated and she was diagnosed with cancer. The doctors prescribed opium and morphine to relieve the pain. Lovelace died in November 1852, and was buried beside her father. Her most important accomplishment was that she envisioned multiple uses for a machine she never saw.
In the early 1970s the U.S. Department of Defense commissioned the development of a programming language that could perform concurrent processing. In 1980 the Ada Joint Program Office was created to launch and maintain the Ada computer language, named in Lovelace's honor. Its documentation became a national standard and is stored in document number MIL-STD-1815 to honor the year of her birth.
see also Analytical Engine; Babbage, Charles.
Ida M. Flynn
Bibliography
Baum, Joan. The Calculating Passion of Ada Byron. Hamden, CT: The Shoe String Press, Inc., 1986.
Stein, Dorothy. Ada: A Life and Legacy. Cambridge, MA: MIT Press, 1985.
Wade, Mary Dodson. Ada Byron Lovelace: The Lady and the Computer. New York: Dillon Press, Macmillan Publishing Co., 1994.