Causes of Death

views updated May 29 2018

Causes of Death

Data on the causes of death provide an important source of information on death. Such data are crucial for monitoring the reasons why people die and for targeting where, when, and how health resources should be expended. Causes of death can be categorized as proximate and non-proximate. Proximate (or immediate) causes of death are those that finally lead to death; for example, heart disease or cancer. Non-proximate causes of death are the factors that increase the likelihood of experiencing one of the proximate causes. For example, tobacco smoking is a non-proximate cause of death due to its link to lung cancer (a proximate cause). Non-proximate causes are the risk factors for dying from a particular proximate cause. Almost always the proximate causes of death are presented in discussions of death causation; this likely reflects the dominance of Western biomedicine in the conceptualization of cause of death.

The proximate causes of death are themselves further broadly categorized as: infectious and parasitic diseases (deaths of infants and maternal mortality are usually included in this category); chronic and degenerative diseases; and deaths due to injury (accidents, homicide, suicide). This distinction (and particularly the difference between infectious/parasitic diseases and chronic/degenerative diseases) figures prominently in later sections of this entry. The following commentary focuses upon proximate causes of death, unless specified otherwise.

Measurement of Causes of Death

Deaths are classified using a standard coding system called the ICD (International Classification of Deaths), which has been organized and published by the World Health Organization since 1946. The ICD is revised periodically (approximately every ten years) to reflect changes in medical and epidemiological knowledge and in the light of diseases that are either new or of growing importance as takers-of-life, such as HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome) and the cognitive dementias such as Alzheimer's disease. The tenth revision, which became effective in 1999, categorizes deaths into seventeen very broad categories. These are: (1) infectious and parasitic diseases; (2) neoplasms; (3) endocrine, nutritional, and metabolic diseases and immunity disorders; (4) diseases of the blood and blood-forming organs; (5) mental disorders; (6) diseases of the nervous system and sense organs; (7) diseases of the circulatory system; (8) diseases of the respiratory system; (9) diseases of the digestive system; (10) diseases of the genitourinary tract; (11) complications of pregnancy, childbearing, and the puerperium; (12) diseases of the skin and subcutaneous tissue; (13) diseases of the musculoskeletal system and connective tissue; (14) congenital anomalies; (15) certain conditions related to the perinatal period; (16) symptoms, signs, and ill-defined conditions; and (17) external causes, injury, and poisoning. These broad categories are similar to the ninth revision.

Within each category are several specific classes that are further divided into particular diseases, disease sites, or conditions. For example, circulatory diseases are further broken down into ischemic (coronary) heart disease and cerebrovascular diseases, among others, which are further divided into more detailed causes. External causes are divided into accidents (further broken down by type), suicides (detailing several methods), and homicides. It is in the specificity of these subcategories that the ninth and tenth revisions differ most. While the ninth revision contains about 4,000 codes, the tenth revision contains nearly twice as manyapproximately 8,000. Thus, users of the tenth revision are able to obtain much more finely tuned information.

Measurement Limitations

In theory the ICD is a very useful tool in the analysis of trends and differentials in cause of death and in the assessment of progress in overcoming life-threatening diseases and conditions. In practice, however, the ICD contains a number of limitations. First, cross-national comparisons are affected by variations in data quality. These variations result from differences in the diagnostic skill and type of training of the certifying medical attendant or coroner, in the accuracy of the diagnosis recorded on the death certificate, and in the accurate coding of the information. At an even more fundamental level, the ICD is based on a number of assumptions (e.g., that medical personnel are present at or near a death, that deaths are recorded by medical personnel, that there are death certificates) that do not necessarily hold for less developed countries and/or in times of social and political upheaval, such as war. Thus, while ICD data are accurate for Western countries (and Eastern countries with a high level of economic development, such as Japan), they are not as accurate for less well developed countries. If countries do not have the infrastructure to systematically record causes of death (or even deaths), then no classification system will create high-quality data. Thus, cause of death data for less developed countries are "best estimates" only.

A second limitation is that ICD categories are based on a single cause of death. This is the "underlying" cause that is deemed by the medical examiner to have generated the sequelae leading to death. For populations in developed countries, in which most deaths occur in old age and in which multiple causes are often involved, a classification system based on a single cause of death can result in a distorted picture of mortality causation. At the same time, deaths due to HIV/AIDS may be underestimated since the disease lowers immunity and it may appear that the individual died from another infectious disease, such as pneumonia.

Third, trend analysis can be affected by changes over time in the ICD categories themselves. An apparent increase or decrease in a cause of death may be the result of a coding/classification change only. While changing categorization is necessary given advances in knowledge and transformation in disease patterns, a downside is that some distorted trends may emerge. Thus, any analyst of cause of death trends must be aware of ICD changes that could lead to findings that are merely artifacts of reclassification.

A fourth limitation is that a new cause of death may be uncategorized, which occurred in the case of HIV/AIDS. The ninth revision became effective in 1979, before medical professionals were aware of HIV/AIDS, and the tenth revision was not implemented until 1999 (the usual ten-year interval in revisions did not occur). In the interim, AIDS/HIV emerged as an important taker-of-life. In response to this epidemic, in the 1980s the United States began to include HIV/AIDS as a separate cause of death. However, this initiative was a national one, and as such included deaths to U.S. residents only. Given the crisis, in 1996 the United Nations, through UNAIDS, took on the task of globally monitoring the number of cases of the disease and deaths due to it. (In the 1980s, the World Health Organization attempted this, but the growing enormity of the undertaking led to the need for a larger, United Nationscoordinated effort.)

Causes of Death in International Context

The more developed and less developed countries differ significantly in causes of death; hence a global summary of causes of death is not useful. As shown in Table 1, the distribution of causes of death is markedly different in the two areas of the world. In the developed countries, diseases of the circulatory system and cancer (both associated with advanced age) are the chief takers-of-life, accounting for approximately two-thirds of all deaths. In contrast, these diseases account for only one-third of deaths in the less developed world. Infectious and parasitic diseaseswhich often attack young peopleare the major killers in the third world, making up 43 percent of deaths. Another important contrast lies in deaths associated with childbirth (both deaths to infants and to mothers), which make up 10 percent of deaths in less developed countries but only 1 percent in more developed countries. Overall, it can be concluded (keeping in mind that cause of death information for the non-Western world is plagued with data quality problems) that the chronic and degenerative diseases associated with old age predominate in the West, whereas the infectious and parasitic diseases (along with childbirth-related deaths) associated with much younger ages prevail in less developed countries.

Epidemiologic Transition

The observation of this global dichotomy in causes of death led to the theory of epidemiologic transitiona three-stage model proposed in 1971 and based on the Western experiencethat deals with changing mortality levels and causes of death. It is less a theory than it is a description of mortality decline and accompanying changes in causes of death as experienced in Western populations. Its basic premise is that a society or population goes through three mortality stages. The title of the first stageThe Age of Pestilence and Famineis self-evident; this stage is characterized by high death rates that vacillate in response to epidemics, famines, and war. Epidemics and famines tend to go hand in hand, since malnourished people are particularly susceptible to infectious diseases. In the second stage, The Age of Receding Pandemics, death rates start to steadily decline and the proportion of deaths due to infectious diseases decreases as a result of the improved nutrition and sanitation and medical advances that accompany socioeconomic development. Eventually, the third stage is reachedThe Age of Degenerative and (Hu)man-Made Diseasesin which death rates are low (life expectancy at birth is over seventy years) and the chief takers-of-life are chronic diseases associated with aging, such as cardiovascular disease and cancer. It is implicitly assumed that infectious and parasitic diseases become less and less important, and that causes of death in the less developed countries will eventually come to be like those in the West.

There is little doubt that the epidemiologic transition model generally holds for the Western case, at least for the time period from the agricultural revolution until the late twentieth century. Prior to the agricultural revolution, it is highly likely that malnutrition (starving to death) was a

Estimated number of deaths worldwide resulting from fifteen leading causes in 1998
Rank Males Females Both sexes
1 Ischaemic heart disease 3,658,699 Ischaemic heart disease 3,716,709 Ischaemic heart disease 7,375,408
2 Cerebrovascular disease 2,340,299 Cerebrovascular disease 2,765,827 Cerebrovascular disease 5,106,125
3 Acute lower respiratory infections 1,753,220 Acute lower respiratory infections 1,698,957 Acute lower respiratory infections 3,452,178
4 Chronic obstructive pulmonary disease 1,239,658 HIV/AIDS 1,121,421 HIV/AIDS 2,285,229
5 HIV/AIDS 1,163,808 Diarrhoeal disease 1,069,757 Chronic obstructive pulmonary disease 2,249,252
6 Diarrhoeal disease 1,149,275 Perinatal conditions 1,034,002 Diarrhoeal disease 2,219,032
7 Perinatal conditions 1,120,998 Chronic obstructive pulmonary disease 1,009,594 Perinatal conditions 2,155,000
8 Trachea/bronchus/lung cancers 910,471 Tuberculosis 604,674 Tuberculosis 1,498,061
9 Tuberculosis 893,387 Malaria 537,882 Trachea/bronchus/lung cancers 1,244,407
10 Road-traffic injuries 854,939 Measles 431,630 Road traffic injuries 1,170,694
11 Interpersonal violence 582,486 Breast cancers 411,668 Malaria 1,110,293
12 Malaria 572,411 Self-inflicted injuries 382,541 Self-inflicted injuries 947,697
13 Self-inflicted injuries 565,156 Diabetes mellitus 343,021 Measles 887,671
14 Cirrhosis of the liver 533,724 Trachea/bronchus/lung cancers 333,436 Stomach cancers 822,069
15 Stomach cancers 517,821 Road traffic injuries 315,755 Cirrhosis of the liver 774,563
SOURCe: Violence and Injury Prevention, World Health Organization. Injury: A Leading Cause of the Global Burden of Disease, edited by E. Krug. Geneva: World Health Organization, 1999.

more important killer than infectious diseases. Once agriculture predominated, the denser settlement pattern of humans as well as closer proximity to animals and animal waste contributed to the spread of infectious diseases. One of the most well-known examples of epidemic-caused loss of life in the West was the Black Death (the plague) that hit hardest in the middle of the fourteenth century but which continued to reoccur for more than three centuries. By the eve of the Industrial Revolution, the plague had virtually disappeared in Europe, as a result of changes in shipping, housing, and sanitary practices that affected the way that rats, fleas, and humans interacted. Other types of infectious diseases (such as cholera, influenza, smallpox, pneumonia) remained important killers, and were eventually conquered by improved nutrition, hygiene, and public health measures, and knowledge thereof. Medical advances played a small role, although the smallpox vaccine was important until well into the twentieth century. As we move into the twenty-first century, however, advances in bioterrorism (such as the post-September 11th anthrax assault in the U.S.) may lead to increasing deaths from infectious diseases).

The epidemiologic transition model applies less well to the developing world. Western mortality decline, and the changing configuration of causes of death associated with it, was fueled by socioeconomic development. In contrast, in third world countries, there is a much smaller relationship between morality and development. In the postwar decade of the 1950s, mortality declines in many third world countries were substantial. In those cold war years, the West (largely the United States) imported public health measures and death-reducing technologies to many less developed countries. As a result, deaths due to infectious diseases fell dramatically in the absence of any significant development.

However, probably the biggest challenge to epidemiologic transition theory comes from the emergence of new, and the reemergence of old, infectious diseases in the latter part of the twentieth century. This has led to debate about epidemiologic transition theory's end stage. Is the third stage the final one? A number of fourth states have been proposed by epidemiologists and demographers. The most popular is the Age of Delayed Degenerative Diseases, corresponding to declines in death rates due to cardiovascular disease experienced in Western countries through the 1970s and 1980s. This stage corresponds with the "compression of morbidity" hypothesis proposed by James Fries, stating that the future holds quick deaths due to degenerative diseases at very old ages. In other words, the typical death will be from a sudden heart attack at approximately age eighty-five, before which one was healthy and hearty. However, now a radically different fifth stage is being proposed in light of increasing death rates due to viruses and bacteria. Indeed the anthropologist Ronald Barrett and his colleagues at Emory University view the trend of increasing mortality due to infectious disease as characterizing a new epidemiologic transition altogether. Others, such as Christopher Murray and Alan Lopez, taking both death and disability into account, argue that noncommunicable diseases will take on increasing importance in the "global burden of disease" (Murray and Lopez, 1996).

The emergence of new infectious and parasitic diseases (AIDS/HIV, Legionnaires' disease, Lyme disease), the reemergence of diseases (smallpox, malaria) that scientists thought had been conquered, and the evolution of antibiotic-resistant strains of bacteria have led to a reappraisal of the possible future role of microbes in mortality. While it does not seem likely that infectious and parasitic diseases will overtake degenerative and chronic diseases as killers, it is difficult to predict the relative importance of the two major categories of death causation in the future. Much appears to depend on how successful medical professionals will be in controlling HIV/AIDS, which is estimated to have taken anywhere between 1.9 million and 3.6 million lives worldwide in 1999 alone. (Given the depression of the immune system that comes with AIDS, it is possible that even the high estimate is low; some persons with AIDS might be counted as dying from another infectious disease to which they are vulnerable.)

Proximate and Non-Proximate Causes of Death in the United States

Table 2 presents the five leading proximate and non-proximate causes of death in the United States. Of the proximate causes, the top four are the classic degenerative diseases associated with aging; the fifth cause is accidents. The non-proximate causes (the risk factors) provide a different lens through which to view death causation. The top three non-proximate causes include tobacco smoking, diets rich in sodium, cholesterol and fat in conjunction with sedentary lifestyles, and excessive alcohol drinking (which is, of course, implicated in accidental deaths as well as in degenerative conditions such as liver disease). The fourth non-proximate cause of death is microbial agents; that is, viruses and bacteria. While some proximate causes of death (such as HIV/AIDS and pneumonia) are directly linked to viruses/bacteria, research indicates that

Leading causes of death
Five leading proximate causes of death in the United States, 1998 Five leading non-proximate causes of death in the United States, 1990s
1. Heart disease 1. Tobacco
2. Cancer 2. Diet/activity patterns
3. Stroke 3. Alcohol
4. Chronic obstructive pulmonary disease 4. Microbial agents
5. Accidents 5. Toxic agents
SOURCE : Adapted from National Center for Health Statistics. Final Data for 1998: National Vital Statistics Report, 48, no. 11. Hyattsville, MD: National Center for Health Statistics, 2000; McGinnis, J. M., and W. H. Foege. "Actual Causes of Death in the United States." Journal of the American Medical Association 270 (1993):2208.

some of the degenerative diseases, such as liver disease and cancers, have microbial causes. In fact, the classic dichotomy between infectious/parasitic diseases, on the one hand, and chronic/degenerative diseases, on the other hand, is being questioned by scientists. Microbes can both cause degenerative disease and increase peoples' susceptibility to them. Since this dichotomy is foundational to epidemiologic transition theory, health researchers are rethinking historical change in causes of death (both proximate and non-proximate).

All of the non-proximate causes of death listed in Table 2 are preventable through public health measures and education. However, this does not mean that all deaths can be prevented. While the researchers Michael McGinnis and William Foege estimate that 50 percent of deaths are due to preventable causes, eliminating these causes would not lower mortality by 50 percent. People are at multiple risk of death at all times, and eliminating one cause of death does not necessarily lower the risk of dying from some other cause. Nevertheless, it is true that healthy behaviors with regard to drinking, eating, smoking, and exercise increase the probability of living longer. However, individuals can only do so much; ultimately, public health measures are critical to mortality level and cause.

See also: Aids; Cardiovascular Disease; Mortality, Infant; Life Expectancy; Mortality, Childbirth

Bibliography

Barrett, Ronald, Christopher W. Kazawa, Thomas McDade, and George J. Armelagos. "Emerging and Re-emerging Infectious Diseases: The Third Epidemiologic Transition." Annual Review of Anthropology 27 (1998):247271.

Cipolla, Carlo M. Fighting the Plague in Seventeenth-Century Italy. Madison: University of Wisconsin Press, 1981.

Fries, J. F. "Aging, Natural Death, and the Compression of Morbidity." New England Journal of Medicine 303 (1980):130135.

McGinnis, Michael J., and William H. Foege. "Actual Causes of Death in the United States." Journal of the American Medical Association 270 (1993):22072212.

McKeown, Thomas. The Origins of Human Disease. Oxford: Basil Blackwell, 1988.

McKeown, Thomas. The Modern Rise of Population. London: Edward Arnold, 1976.

McNeill, William H. Plagues and People. New York: Doubleday, 1976.

Murray, Christopher J. L., and Alan D. Lopez. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020. Boston: Harvard School of Public Health on Behalf of the World Health Organization and the World Bank, 1996.

Olshansky, S. Jay, and A. B. Ault. "The Fourth Stage of the Epidemiologic Transition: The Age of Delayed Degenerative Diseases." Milbank Memorial Fund Quarterly 64 (1986):355391.

Olshansky, S. Jay, Bruce A. Carnes, Richard G. Rodgers, and Len Smith. "Infectious DiseasesNew and Ancient Threats to World Health." Population Bulletin 52, no. 2 (1997):152.

Omran, A. R. "The Theory of Epidemiological Transition." Milbank Memorial Fund Quarterly 49 (1971):509538.

UNAIDS. Report of the Global HIV/AIDS Epidemic. Geneva: UNAIDS, 2000.

Weeks, John R. Population: An Introduction to Concepts and Issues. Belmont, CA: Wadsworth, 1996.

Yaukey, David, and Douglas L. Anderton. Demography: The Study of Human Population. Prospect Heights, IL: Waveland, 2001.

Internet Resources

National Center for Health Statistics. International Classification of DiseasesTenth Revision (ICD-10). In the Centers for Disease Control [web site]. Available from www.cdc.gov/nchs/about/major/dvs/icd10des.htm

ELLEN M. GEE

Causes of Death

views updated May 23 2018

CAUSES OF DEATH


Information on cause of death is essential for understanding trends and inequalities in mortality. Compiling this information requires a consistent scheme for classifying causes of death and an appropriate system for registration and record-keeping. Both were developed during the nineteenth century and had become systematic in all industrialized countries at the beginning of the twentieth century. In these countries medical certification of the cause of death is routine. This is not the case, however, in most developing countries. "Verbal autopsies"–information about the symptoms and conditions which accompanied the death obtained by questioning close relatives of the deceased–can contribute some knowledge of causes of death, especially for children, but they cannot produce reliable statistics of mortality by cause.

Classification of Causes of Death

After lengthy debate, the first international classification of diseases and causes of death, largely devised by Jacques Bertillon (1851–1922), was adopted in 1893. There have been ten subsequent revisions, none of them radically changing the original structure although producing severe disruptions in time series on causes of death. The International StatisticalClassification of Diseases and Related Health Problems–Tenth Revision (ICD-10), was adopted by the World Health Organization (WHO) in 1989.

Ten of the ICD-10's 21 chapters refer to a specific bodily system, such as Chapter VI, "Diseases of the nervous system," and Chapter X, "Diseases of the respiratory system." Some other chapters refer to etiological processes, like Chapter I, "Certain infectious and parasitic diseases," and Chapter II, "Neoplasms." Still others are linked to a particular period of life, like Chapter XVI, "Certain conditions originating in the prenatal period," and Chapter XV, "Pregnancy, childbirth and the puerperium."

Such a structure makes it difficult to identify homogeneous pathological processes. Trends in distinct pathologies can depend on common factors and may be influenced through appropriate intervention. To identify these processes, several authors have suggested alternative classifications, drawing on the concept of avoidable mortality. Causes of death can be divided into "avoidable" and "unavoidable." While this may be helpful in designing health policies at a particular time, it is of little value in analyzing trends as medical progress continually shifts diseases into the avoidable category.

Ideally, a useful classification should make it possible to distinguish between different etiologies. Marc d'Espine promoted this idea in the nineteenth century, in the debates surrounding the first version of the International Classification. At a time when the nature of the diseases was so little known, such an exercise would have been wholly utopian. With twenty-first-century medical science, an etiological classification could be designed–and in fact has been partially attempted, using French data. In this exercise trends in mortality from different processes (such as infectious, tumoral, or degenerative processes) could be followed more precisely. The exercise was especially useful in tracking infectious disease mortality. Although many infectious diseases are covered in ICD-10's first chapter, "Certain infectious and parasitic diseases," others are scattered through the remaining chapters. For instance, influenza falls in Chapter X, "Diseases of the respiratory system," and appendicitis in Chapter XI, "Diseases of the digestive system." Reclassifying diseases according to etiological criteria as infectious processes permits a better estimate of the weight of infection in total mortality.

Identifying Causes of Death

A death is the result of successive pathological processes that may have appeared or developed because of other preexisting conditions. Most studies on causes of death refer to only one cause. To insure some coherence in identifying this "underlying" cause, WHO recommends a model two-part medical death certificate and rather strict rules for coding. In Part I of the death certificate, the physician reports all the conditions that are directly responsible for the death in the reverse order they appeared. The first line contains the "direct" cause that immediately produced the death, and the last line the "initial" cause that induced the processes which finally led to the death. In Part II, the physician reports all other "contributory" causes that are not directly responsible for the death but which may have contributed to it. Coding rules help the physician to choose from among all these conditions the one which is considered to be the "underlying" cause of death. In most cases, this is the disease reported on the last line of Part I. However, in some specific cases the order of the pathological processes may be reconsidered by the authorities in charge of coding and another condition, reported elsewhere in the certificate, may be chosen as underlying cause of death.

The identification of only one cause of death considerably reduces the amount of information reported in the death certificate. This loss of information becomes increasingly serious under conditions of very low mortality. With very low mortality, most deaths occur at old ages to persons who may be suffering from several chronic diseases, making it difficult to choose the main cause of death. Hence efforts are being made to find ways of taking into account all the information reported in the death certificate, through multiple-cause analysis. Two approaches can be used. In the first, all mentions of a disease are noted, whatever the place they occupy in the death certificate. This approach highlights the part played in mortality by conditions like diabetes or alcoholism, which are seldom reported as the underlying cause of death but often contribute to deteriorating health. In the second approach, the most frequent associations of causes are examined, so as to identify sequences of pathological processes that are more lethal than others. Multiple-cause analysis is an important challenge for future studies of mortality and morbidity.

Problems of Comparability in Time and Space

Although nearly all countries producing regular statistics of deaths by cause use the current ICD and WHO's classification rules, comparability among countries is limited because of substantial differences in medical practice and coding habits. One such problem is in use of the category "ill-defined causes." Some countries where diagnoses tend to be imprecise assign many deaths to this category. For instance, for the year 1996, almost 12 percent of deaths in Portugal were classified into Chapter XVIII, "Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified," compared to 4.5 percent in Russia, and less than 0.1 percent in Hungary. Consequently, before making international comparisons of specified causes of death, the deaths attributed to ill-defined causes must be redistributed into specified causes. If the probability for a death being recorded as having an ill-defined cause is independent of the actual cause of death, it is possible to proportionally redistribute deaths from ill-defined causes into all the specified categories. More sophisticated methods of redistribution can also be used. Beyond the general problem of illdefined causes, international comparisons are affected by systematic differences in diagnostic practice. A case in point concerns myocardial infarction and other ischemic heart diseases: some countries, such as France, prefer the first diagnosis; others, such as the United Kingdom, prefer the second. To compare the level of mortality from ischemic heart diseases, it is better to combine the two pathologies (myocar-dial infarction and other ischemic heart diseases). In the same way, in theory ICD-10 allows one to distinguish between cancer of the cervix and other cancers of the uterus. In practice the distinction is not made on the same criteria from one country to another and a comparison of deaths classified as "cancer of the cervix uteri" would lead to erroneous conclusions. In general, in any investigation that uses a detailed cause of death, it is necessary to consider at the same time all other causes that may be confused with it.

Problems of comparability are still more serious when dealing with time trends. As with cross-national comparisons, a prior redistribution of deaths from ill-defined causes is necessary. Such categorization of deaths generally decreased as diagnostic precision improved. For instance, in France, use of the category fell from 30 percent in 1925 to 6 percent in 1996. More problematic for comparisons over time are the breaks introduced in the time series by the successive revisions of the ICD. As medical knowledge expands, the contents of the ICD are revised: new disease designations are added, and others are removed. The number of items in the ICD has risen from 203 in the first classification of 1893 to more than 10,000 in ICD-10. To observe long-term trends, it is necessary to reclassify deaths using a constant medical definition of the cause. This would be relatively straightforward if registration authorities produced a double classification of deaths under the old and new classifications whenever a revision came into effect, but that is seldom done. Thus, reconstruction of long-term cause-of-death series for any country usually requires long and meticulous work to insure medical and statistical coherence. The few countries for which this has been done include France, the Netherlands, and some countries of the former Soviet Union.

Main Trends in Causes of Death

Until the 1960s in industrialized countries, the principal contribution to rising life expectancy was the reduction of mortality from infectious diseases and the subsequent decrease in infant mortality. Following this fundamental change in the pattern of causes of death, the pace of increasing life expectancy slowed under the double effect of the emergence of man-made diseases (diseases due to tobacco and alcohol, and traffic accidents) and the growing weight of chronic diseases (cardiovascular diseases, cancer). From the 1970s, life expectancies continued increasing because of successes in controlling man-made diseases and in reduction of mortality from cardiovascular diseases, especially among the elderly. However, this resumption of progress was not general. Countries of Eastern Europe (including the former Soviet Union) lagged in the control of the chronic diseases and their life expectancy, especially for males, stagnated or even decreased.

The situation in developing countries shows even greater contrasts. Some countries, such as China, South Korea, Mexico, and Tunisia, have followed the same path as the developed world and, thanks to a rapid decrease in mortality from infectious diseases, have reached high levels of life expectancy. In contrast, countries of sub-Saharan Africa have largely failed to control infectious diseases. The emergence of AIDS and the reemergence of diseases like malaria contribute to the poor health status of these populations.

See also: Bertillon, Jacques; Disease, Burden of; Disease, Concepts and Classification of; Epidemiological Transition; Farr, William; Mortality, Age Patterns of; Mortality Decline.

bibliography

Bourgeois-Pichat, Jean. 1952. "Essai sur la mortalité biologique de l'homme." Population 7(3): 381–394.

Holland, W. W., dir. 1993. European Community Atlas of Avoidable Death, 2nd edition, volume 2. Oxford, Eng.: Oxford University Press.

Ledermann, Sully. 1955. "La répartition des décès de cause indéterminée." Revue de l'Institut international de statistique 23(1): 3.

Meslé, France. 1996. "Les causes médicales de décès." In Démographie: analyse et synthèse. Causes et conséquences des évolutions démographiques. Paris: CEPED/DSD.

——. 1999. "Classifying Causes of Death According to an Aetiological Axis." Population Studies 53(1): 97–105.

——. 1996. "Reconstructing Long-Term Series of Causes of Death." Historical Methods 29(2): 72–87.

Meslé, France, and Jacques Vallin. 1984. "The Problem of Studying Mortality Patterns By Cause over a Long Period of Time: An Example from France, 1925 to 1978." In Methodologies for Collection and Analysis of Mortality Data, ed. Jacques Vallin, John Pollard, and Larry Heligman. Liège: IUSSP, Ordina Éditions.

Omran, Abdel R. 1971. "The Epidemiologic Transition: A Theory of the Epidemiology of Population Change." Milbank Memorial Fund Quarterly 49(4): 509–538.

World Health Organization. 1992. International Statistical Classification of Diseases and Related Health Problems, 10th revision, volume 1. Geneva: World Health Organization.

Wolleswinkel-van den Bosch, Judith. 1998. The Epidemiological Transition in the Netherlands. Rotterdam: Erasmus University.

internet resources.

Vallin, Jacques and France Meslé. 1998. "Les causes de décès en France depuis 1925." Institut national d'études démographiques. <http://matisse.ined.fr/~tania/causfra/data/>.

World Health Organization. 2001. <http://www.who.int/whosis>.

France MeslÉ

Causes of Death

views updated May 29 2018

CAUSES OF DEATH

In looking at patterns and variables in causes of death worldwide, it is important to consider physical, economic, social, and environmental factors, as well as the age structure of different populations. In the early 1990s, for example, the developed countries of the world accounted for 11 million of the world's nearly 50 million deaths. The large majority of these (10.4 million) were due to noncommunicable diseasesmainly cardiovascular disease (5.3 million), cancer (2.3 million), respiratory disease (0.5 million), and injuries (about0.7 million). Of all deaths occurring in developing countries, however, 40 percent (16 million) were due to communicable, maternal, and perinatal causes, and 60 percent to noncommunicable diseases (18 million) and injuries (3.5 million). Deaths from injuries caused roughly the same proportion of deaths in both developed and developing regions, but were twice as common among males than among females.

In developing countries, differences occur in the distribution of causes of deaths. The probability of dying before the age of fifteen varies according to sex and cause of death in the various areas, though the breakdown between communicable and noncommunicable disease is similar to that discussed above (see Figure 1). Discrepancies are largely due to the methods used to estimate the number of deaths.

The distribution of causes of mortality is changing, and is likely to continue to change. In developed countries, deaths from communicable diseases and perinatal and maternal causes fell from 6 percent to 2 percent of all deaths between 1985 and 1997, while the percentage in the developing world fell only slightly, to 53 percent. Over the same period, deaths from cardiovascular diseases fell from 51 percent to 46 percent of all deaths in developed countries, but increased from 16 percent to 24 percent in the least developed countriesthose countries where manufacturing accounts for

Figure 1

less than 10 percent of GDP, where adult literacy is less than 20 percent, and where the per capita GDP is $100 (1968) or less.

A comparison of the extremes of the spectrum of development shows a marked difference in the age distribution of deaths. In developed market economies less than 2 percent of deaths occur before the age of twenty (this is likely to be 1 percent by 2025), while in the least developed countries the figure rises to 40 percent (23 percent by 2025). Similarly, deaths above the age of sixty-five represents about 77 percent of all deaths in the developed market economies (projected to 88 percent by 2025), but only about 12 percent (31 percent in 2025) in the developed countries.

The impact of health structures within a nation is less well known, but is likely to affect mortality. One striking case is that of AIDS (acquired immunodeficiency syndrome). New therapies have led to a marked fall in deaths from AIDS in the developed world. With few exceptions (e.g., Brasil), however, these therapies are not systematically applied in developing countries, for reasons of cost, and a lack of adequate health structures for distribution and education, and deaths from AIDS in those countries continue to rise. Both the age structure of a population and the conditions under which it lives will thus affect not only the amount of death a population encounters, but the way the death comes.

Michel C. Thuriaux

(see also: Certification of Causes of Deaths; Infant Mortality Rate; Mortality Rates )

Bibliography

Murray, C. J. L., and Lopez, A. D. (1994). "Global and Regional Causes-of-Death Patterns in 1990." Bulletin of the World Health Organization 72 (3):447480.

World Health Organization (1999). The World Health Report 1998Life in the 21st Century: A Vision for All. Geneva: Author.

More From encyclopedia.com