O'Neill Colonies

views updated

O'Neill Colonies

Gerard K. O'Neill (1927-1992), a particle physicist who spent most of his career at Princeton University, was the driving force behind the first serious space colony design study. Conducted in 1975, this study took the form of a ten-week program held jointly at the National Aeronautics and Space Administration (NASA) Ames Research Center and at Stanford University, outside San Francisco, California. NASA and the American Society for Engineering Education sponsored the program. The program's work laid out the basic requirements for large-scale human settlement of the solar system. As technical director, O'Neill guided the study towards its basic conclusion that the best way to begin the human colonization of space was to build a large space colony at L-5 , with the colony being dedicated to using lunar materiel to build a series of solar power satellites to beam electricity down to an energy-hungry planet.

Colony Basics

The colony would be a home for 10,000 people living and working in a round tube 130 meters (425 feet) across and 1,790 meters (5,870 feet) in diameter. The ring would rotate around a central hub, providing artificial gravity. It would be shielded from solar radiation by 9.9 million metric tons (10.9 million tons) of lunar material, built up as a stationary ringstationary relative to the habitation structure. At the center of the ring would be a hub where spaceships would dock and where cargo and passengers would be transferred back and forth.

A large circular mirror with a hole in its middle would be positioned directly above the colony to beam sunlight into the structure, bypassing the shielding and providing both light and solar energy to power the photovoltaic cells arrayed around the hub. Underneath the main structure would be a large heat radiator that would collect and expel waste heat generated by the colony. At the bottom of the structure, at the end of a long access tube, would be a solar furnace where lunar ore (or ore from elsewhere in the solar system) would be converted into material with which to build solar power satellites and other space habitats.

What Motivated O'Neill's Vision?

At the time of the initial study, O'Neill was partly motivated by the worldwide energy crisis of the early seventies and the popular "Limits to Growth" movement. This movement was embodied in such documents as the famous Club of Rome report, which summed up Limits to Growth's attitude with the declaration that "the world has a cancer and the cancer is man." O'Neill rejected the grim future implied by this group. He saw that this powerful movement required that future "limits will almost surely be more than physical, and that in the long run the freedom of the human mind will have to be limited also. . . . For me the age old dreams of improvement, of change, of greater human freedom are the most poignant of all; and the most chilling prospect that I see for a planet bound human race is that many of those dreams will be forever cut off for us." (O'Neill 1982, pp. 39-40).

As he refined his vision, O'Neill began to ask basic questions about the world: "Is a planetary surface the right place for an expanding technological civilization? There is no clear answer except to say that my own interest in space as a field for human activity went back to my own childhood, and that I have always felt strongly a personal desire to be free of boundaries and regimentation. The steady state society, ridden with rules and laws, proposed by the early workers on the limits to growth was, to me, abhorrent" (O'Neill 1982, p. 279).

In order to make his vision of the humanization of space plausible, O'Neill had to invent a new way of looking at the resources and the economics of human space activity. He imagined a space economy in which 90 percent or more of the raw materials needed for survival would come from the Moon, the asteroids, or elsewhere in the solar system. Only an indispensable small amount would have to be brought up from Earth.

Obstacles to Permanent Space Colonies

Then, as now, the greatest obstacle to building a permanent human colony in space was the expense of getting into low Earth orbit . In the late 1970s and the early 1980s it was thought that NASA's space shuttle would provide reliable, relatively inexpensive, access to space. O'Neill expected that there would be a minimum of twenty-five shuttle flights a year. The reality is that in the early twenty-first century NASA is struggling to fly the shuttle more than six or seven times a year at a cost of between $300 million and $400 million per flight.

O'Neill accurately foresaw that the shuttle could be improved. The weight of the main fuel tank has been considerably reduced, the main engines have been made lighter and more efficient, and, after the Challenger disaster in 1986, the whole system has been made safer and more reliable. Unfortunately, this has not been enough to make the space shuttle into the all-purpose, reliable vehicle that NASA had promised. The heavy-cargo version of the shuttle, the so-called Shuttle-C, which O'Neill had been depending on to build the initial elements of his dream, never materialized.

For moving large tonnages of material from the Moon's surface to the space colonies, O'Neill imagined a mass driver, a type of electromagnetic catapult. Powered by solar-generated electricity, this machine would have very low operating costs and would be the centerpiece of lunar mining. Longer term, mass drivers would be used to move heavy loads of material throughout the solar system.

O'Neill's Ultimate Dream

Ultimately, O'Neill imagined that humanity would gradually move out into the solar system, leaving Earth with a much smaller population that was dedicated to tending the planet's magnificent, unique environment and its historical treasures. Thousands, perhaps millions, of visitors would come to see the wonders of humanity's original home world. The vast majority of the human race would live, work, and thrive elsewhere in the solar system.

The resources needed to accomplish this goal and to fulfill O'Neill's great dream already exist. O'Neill concluded that space "is nothing less than a rich, wholly new frontiera new ecological range for humankind. . . .The untapped resource of clean, unvarying solar energy waiting on that frontier is more than a hundred million times as much as the sunlight we intercept on Earth. The material resources waiting there, in the form of small asteroids whose diameters have been measured and whose orbits have been plotted, are enough to let us build Earth-like colonies with a total land area of three thousand Earths. So much for the limits to growth" (O'Neill 1982, p. 321).

see also Communities in Space (volume 4); O'Neill, Gerard K. (volume 4); Settlements (volume 4).

Taylor Dinerman

Bibliography

Harrison, Albert A. Spacefaring: The Human Dimension. Berkeley, CA: University of California Press, 2001.

O'Neill, Gerard K. The High Frontier: Human Colonies in Space. Garden City, New York: Anchor Books, 1982.

More From encyclopedia.com