Overview: Technology and Invention 700-1449

views updated

Overview: Technology and Invention 700-1449

The medieval era often is considered a time of modest achievements, literally a middle period between the substantial intellectual achievements of Greece and Rome and the Renaissance. Yet this sweeping generalization was not true for technology, which underwent great changes during these years. The decline of the Roman Empire, the emergence of the feudal system, the growing frequency of international trade, and, European exposure to the Middle East through the Crusades changed the way people lived. The Middle Ages were a period of substantial achievement in agriculture, new power sources, mechanization, military weapons, transportation, and construction. These developments so transformed technology that they produced a medieval industrial revolution.

Warfare

The introduction of the stirrup, previously known only in Asia, transformed warfare and may have helped restructure society in eighth-century Western Europe. It allowed a warrior to use a lance and other arms more forcefully against an opponent while keeping his seat. This new mounted shock combat was so successful that it spread throughout Western Europe, where an armored cavalry became the military standard. Some scholars argue that the expense of outfitting a warrior with horse, armor, and associated weapons drove communities to band together to support this new military machine. In exchange for their support, these knights provided defense and security for their communities and the feudal system, so characteristic of the Middle Ages, evolved. Others contend that feudalism had so many variations in so many places that it's impossible to tie its development to one particular development.

Whatever its societal effect, mounted shock combat remained the prevailing mode of battle until the thirteenth century, when the Welsh longbow finally allowed archers to disable armored warriors. Military tactics changed yet again, capitalizing on the longbow's advantages and developing strategies to defend against it. By the fourteenth and fifteenth centuries warfare was transformed again when the introduction of gunpowder from the East led to the development of the cannon and the matchlock gun. Although firearms did not become reliable weapons until the Renaissance, their appearance in the late medieval period established a new link between the military might of a state and its quest for empire. Government interest in a strong military led to support for metallurgy, weapons development, and standing armies. This began an era of gunpowder empires in which military might led to territorial acquisition.

Agriculture

Several significant innovations in agricultural techniques changed the way food was produced during the Middle Ages. The development of the wheeled moldboard plow and coulter allowed farmers to cultivate the heavy, wet soils of Northern Europe. The new plow needed at least four (and as many as eight) oxen to pull it. Its size and weight also made turning at the end of a furrow difficult. To make plowing easier, fields changed from their traditional square shape to long narrow strips. With the invention of the padded horse collar a hundred or so years later, farmers were able to use horses rather than oxen to pull the plow. Because horses were faster and could work longer than oxen, the amount of land that could be farmed—and the amount of food it produced—increased. With the further adoption of horseshoes, horses became both beasts of burden and a means of transportation for the agrarian community.

In addition to the new plow and the wider use of horses, farmers began to adopt the three-field crop-rotation system in which one-third of the land was sown in spring crops [peas and beans], one-third in fall crops [wheat, oats] and one-third left as pasture or fallow land. Each parcel of land was used in a cycle called the triennial system. This more efficient use of the land increased food production and renewed the soil, giving people more, better, and varied food as well as vegetable protein, which is important for a healthy diet.

These important developments increased food supplies, supported a larger population, and encouraged the growth of commercial centers and towns. The resulting increase in wealth through increased trade and commerce helped move Western Europe from an agrarian society to a more urban-based culture in the latter part of the medieval era.

Power from Water and Wind

In Roman times, slaves and animals were the chief sources of power. The Christian Church, however, frowned on slavery so the practice diminished in Western Europe (although many forms of serfdom were hardly better than slavery). To compensate, natural power sources such as water- and windmills replaced animate power. These mills, which dotted the landscape, were used to grind grain, saw timber, full (shrink, thicken, and press) cloth, drive bellows, and power forge hammers. The mills' widespread distribution and use made them the prime power sources of Western Europe, each providing the equivalent of about 20 horsepower.

A Mechanical Age

The extensive use of water- and windmills was made possible by advancements in mechanical technology, especially the use of gears, cranks, cams, camshafts, flywheels, and connecting rods, which transformed the motion of a water mill wheel or windmill sail into a variety of useful tasks such as lifting, pounding, or sawing. The mechanical acumen crasftsmen gained from building and maintaining these mills also played a key role in the development of spring- and weight-driven clocks. These intricate mechanical devices became common in the fourteenth century both as time keepers—usually having only an hour hand on the clock face—and as models of the universe. Many towns competed with each other to build the largest, most intricate clock with various moving figures and sounds. Several extant working models in various European cities continue to dazzle visitors as marvels of medieval mechanical ingenuity.

Ocean-going Travel

Three innovations in ship design created new transportation technology that made ocean travel much more feasible. The first was the adoption of the triangular or lateen sail that had first been used in the East. When paired with the traditional square sails on Western ships, the lateen sail allowed boats to tack or sail into the wind. Ships no longer had to wait in port for favorable winds before they could leave.

The second innovation, the stern-post rudder, gave sailors more control of their ships. Located in the middle of the boat's stern and riding below the water, the rudder was less subject to the motion of the waves and was easier to operate than the dual oars it replaced. Eventually larger rudders allowed larger ships to transport more cargo. With the incorporation of the compass, the third innovation in ocean travel, ships could sail on cloudy days in a variety of weather conditions beyond coastal waters. As ship design advanced, lighter, stronger craft with skeleton frames began to explore and navigate the world's oceans. This, in turn, further stimulated economic and commercial activity in Europe.

Stone Structures

A defining hallmark of medieval technology is the skill with which its craftsmen designed and built in stone. This empirical technology, developed over decades of trial and error, is a testament to the ingenuity and talent of masons, journeymen, and other workers. Their knowledge diffused throughout Western Europe as they moved from building site to building site, sharing their experiences with other tradesmen.

The extent of this empirical talent is evident in the sturdy stone structures built during the Middle Ages. Town walls and the castles within them served feudal communities well as citadels of safety in the centuries before gunpowder transformed warfare. The medieval landscape became synonymous with these structures.

The most beautiful of medieval stone structures, Gothic cathedrals, with their soaring stone arches, ribbed vaulting, and elegant flying buttresses defined the epitome of church architecture in the era. Built to maximize natural interior light, their interplay of engineering, religion, and art was created by master masons who sought to build churches of dramatic height to awe and inspire parishioners and pilgrims in a time when religion dominated much of society and culture. These cathedrals dominated the skyline of many medieval cities and towns, and their durability is a testament to the high technological achievements of the Middle Ages.

Conclusion

The medieval period was a high point in the history of technology, a time when technology affected the lives of Western Europeans as fully as the Industrial Revolution would centuries later. The Crusades and increased ocean travel had introduced Europe to the technology of the Far and Middle East during the latter part of the era. When these new methods met local needs and talent, the two combined to produce lasting and impressive results. With their myriad achievements in warfare, agriculture, power sources, mechanics, and water transportation, medieval craftsmen created a technological revolution that is often overlooked. Fortunately, many examples of those achievements still exist. They remind us that technology can advance without much theoretical grounding and that skilled, dedicated, and motivated people play a key role in technological progress.

H. J. EISENMAN

More From encyclopedia.com